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A S Y M P T O T I C  S O L U T I O N S  O F  W A K E S  A N D  B O U N D A R Y  L A Y E R S *  

by 

L. Tin g':-'* 

1. Inlroduclio~z 

The asymptotic expansions of the solutions of boundary layer equations 
valid far downstream were eriticaliy examined by Stewartson [i~. It was 
pointed out that it was necessary to admit Ln x terms in addition to terms 
involving only powers of x in order to insure the exponential decay of the 
solution with respect to y. The variable x is measured along the direction 
of the basic stream or along the boundary wall and y is the coordinate 
normal to x. 

The development of higher order solutions for boundary layer along a 
flat plate E2, 3, 4, 5~ was carried out as an asymptotic expansion of solutions 
of Navier Stokes equations for large Reynolds number, Re. In addition to 
the regular terms involving powers of Re, it was found necessary to add 
some terms involving ~n Re. 

In all those solutions, the logarithmic terms were added artificially after 
the breakdown of the regular solution. It is the purpose of this paper to 
show how to predict in advance whether the regular solution is going to 
break down or not and where the breakdown occurs if it does and to generate 
in a straightforward manner the complete asymptotic solution which will 
inelude the logarithmic terms if they should be present. This task will be 
accomplished by making use of the identification of asymptotie solution with 
perturbation solutions ['6]. The perturbation parameter ean be either the 
deviation from a given flow or the square root of the inverse of the Reynolds 
number and will be assigned for each problem. The perturbation equations 
are partial differential equations of two variables while in the analyses of 
predecessors the iteration or perturbation equations are ordinary differential 
equations in one variable with the dependence on the other, the x variable, 
preassigned. 

The far wake problem of Goldstein [7-] will be reexamined by the pertur- 
bation method in 2. The main objectives of this paper can be achieved by 
following the classical approach [i, 7], using the boundary layer equation 
in Cartesian coordinates and linearizing the convective terms. However, 
in the present paper, the boundary layer equation in yon Mises variables, 
the von Mises equation, [8] is used as the basic equation. The purpose 
for doing so is to show in 2.1 that for the far wake problem the von Mises 
equation is the equation to be used for linearization or iteration because 
the perturbation equations or the iteration equations preserve the condition 
of conservation of linear momentum. The leading term of the first pertur- 
bation solution of the von Mises equation yields the first term of the 
asymptotic solution for large x with the total momentum equal to that of 
initia] profile or directly related to the drag of the body. There is no 
additional contribution to the first term of the asymptotic solution from 
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the higher order perturbation solutions. In contrast, there will be additional 
contributions to the first term of the asymptotic solution from each suc- 
cessive perturbation or iteration of the boundary layer equation in Cartesian 
coordinates [I]. By starting from the yon Mises equation, the perturbation 
equations have inhomogeneous parts different from those of Goldstein's 
analysis [7~. Nevertheless, the condition for the "breakdown" of the "reg- 
ular" solution remains the same when the method of analysis of Goldstein 
is followed in 2.2. When the perturbation equation is solved by the method 
of normal mode [9], the eomplete solution is obtained in a straightforward 
manner in 2.2 and the condition for the appearance of the logarithmic terms 
or that for the breakdown of the regular solution is clearly identified with 
the "resonance" condition in nonlinear vibration problems, i.e., there is 
a term in the inhomogeneous part, with the power of x equal to an eigen- 
value and non-orthogonal to the corresponding eigenfunetion. A general 
discussion of the appearance of the logarithmic terms in various powers 
in the higher order solutions is given in 2.3. 

The higher order solutions for the boundary layer along a flat plate are 
studied in 3.]. The homogeneous part of the perturbation equation is iden- 
tical to the linearized boundary layer equation for perturbations from the 
Blasius solution. The eigenvalues, eigenfunctions and the Green's function 
have been constructed in [i0]. With the use of the Green's function, the 
higher order solutions are obtained in a straightforward manner including 
the logarithmic term. Its appearance can again be identified as the "reso- 
nance" condition, Three other examples of generation of the asymptotic 
solutions by means of the perturbation method are presented in 3.2, 3.3, 
and 3.4. 

2. Two Dimensional Symmetr ic  Wake 

Far downstream from the body, the pressure gradient becomes zero and 
the flow outside the wake is uniform with velocity U in the direction of 
the x-axis. The deviation of the velocity in the wake from the uniform 
velocity has been investigated by Tollmein [ii], Goldstein [7] and Stewart- 
son ~i]. In their analyses, the boundary layer equations in x, y coordinates 
are used. For the first iterative solution, the governing equation is linear- , 
ized by the Oseen type approximation 

Uu x VUyy = 0 ( 2 . 1 )  

where u is the x-component of velocity and v is the kinematic viscosity. 
In the next iteration, the term -(U-u) u x-vu v appears as the inhomogeneous 
term with the vertical component of the-velocity, v, computed from the 
continuity equation. Wfth the boundary conditions of Uy(X0 0) = 0 and u(x,~) 
-~U the integration of eq. (2. I) across the wake yields the conservation of 
the mass flux 

d-~ U-u)dy : 0 

instead Of the conservation of the momentum flux 

(2.2) 

d [~,(U-u)dy = 0 
dx jo 

(2.3) 

The latter is obtained by the integration of the complete boundary layer 
equation. Stewartson [I] pointed out that the iteration solution will even- 
tually fulfill eq. (2.3) as the number of iterations increase. 
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F o r  t he  i l l u s t r a t i o n  of  t h e  p e r t u r b a t i o n  t e c h n i q u e s ,  t h e  a n a l y s i s  c a n  p r o -  
c e e d  w i t h  t h e  s a m e  e q u a t i o n  in  x - y  c o o r d i n a t e s .  H o w e v e r ,  in  t h e  p r e s e n t  
p a p e r ,  t h e  b o u n d a r y  l a y e r  e q u a t i o n  in  y o n  M i s e s  v a r i a b l e s  x,  ~ w i l l  b e  
used. The basic equation is [8] 

u X - v [ u u ~ ] ~  : 0 (2.4) 

where ~ is the stream function and is related to y by the equation 

x 

Y : u ( x , ~ )  

T h e  b o u n d a r y  c o n d i t i o n s  a r e  

(2.5) 

u -~ U as % ~m, x => x o (2.6) 

u ,  : 0 a t  ~ : O, x__> x o (2.7) 

and the initial condition at x = x o is 

uE1 _> o (2.8) 

The small parameter c is a measure of the deficiency in the initial profile, 
for example, c = [U-U(Xo, 0)]/U and f(0) = i. r is assumed to be much 
less than unity but much larger than the inverse of the square root of the 
reference Reynolds number so that u(x, r r obeys the boundary layer equa- 
tion. The solution will be a function of x-x o and ~ and is invariant to the 
choice of the value for x o. An optimum value for x o will be defined later 
for the perturbation solution [6]. Consistent with the initial profile, the 
solution u is written in a power series of e as follows: 

u(x, @, C) = U [l-ctl(1)-E2U(2)...] 

The perturbations equations are 

U(1)x /2U u~l~ = 0 ( 2  . 9 a )  

2 

U (n) " l~m u%n~ = ~ U (n~ rl : 2,  3 . . . .  (2 .  9C) 

T h e  b o u n d a r y  c o n d i t i o n s  f o r  n = 1, 2,  3 . . . .  a r e  

u (n) ~ 0 a s  ~ ~ co x > x ( 2 . 1 0 )  
- -  0 

a n d  

u% n) : 0 at ~ : 0 x _> x o (2.11) 

The initial conditions at x = x o are 

u(1) : f(~) (2 .12)  
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and 

U (n) = 0 n = 2, 3, 4 . .  (2. 13) 

It is clear that by means of yon Mises variables, the continuity equation 
is uncoupled from the determination of u (n) (x,@). An additional and essential 
advantage canbe found by the integration of the perturbation equations across 
the wake and by applying the boundary conditions. The result is 

~" d j'[u(n) udy  __d u (n) d~b = ~ = 0 n : 1 , 2 , 3 . .  
dx ~o 

(2. 14) 

From the initial conditions for u (]) , eq. (2.14) becomes 

~Cu (1)d~ : Iof(~)d~ 

or 

For n = 2,3,4.., eq.(2.13) and eq.(2.14) yield 

~ u(n)d@ = u(n)u = 0 dy (2 .  16) 
~ 0  ~ 0  

Equa t ion  (2.15)  and (2.16) s t a t e  the f ac t s  tha t  the f i r s t  p e r t u r b a t i o n  so lu t ion  
preserves the momentum flux of the initial profile and that there is no 
contribution to the momentum flux from the higher order solutions. 

Equation (2.9a) or the homogeneous equation of eq. (2.9e) is identical 
to a linear heat conduction equation. When the initial profile f(~) decays 
exponentially with respect to @, the solution for x>x o possesses the same 
property and the boundary condition of eq. (2. I0) is replaced by the stronger 
condition 

u (n) ~ 0 (@'~) for any o~ > 0 as @ -+oo. (2.17)  

2 . 2  Perlurbatiozz Solutio,zs 

With the condition of exponential decay as @-, m and the condition of 
symmetry with respect to ~, the eigenvalues, X, of the homogeneous equation 
of eq.o(2.9) are odd integers, i.e., k = 1,3,5.. and the eigenfunetions 
are x-~/2~(~,) where ~ = ~(4uUx)-�89 and ~X(~) is the k-th derivative of 
erf ([) [12,13J. The solution for u (I) can be expressed as a sum of the 
eigenfunetions, [6], 

u O ) ( x , r  = zA~,q)~ , (B)(Xo/X)  ~'72 , ;~ = 1, 3, 5 . . .  (2.18) 

where AT, = 
co  

iiexp ~ 2 0 0~2(%o)d~o 

(2.  191 

In particular, A 1 becomes: 

f A 1 : f(~/)d@/(4 vUx o )~ (2.20) 
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i s  s e t  e q u a l  to z e r o ,  a n  o p t i m u m  v a l u e  f o r  x o i s  o b t a i n e d ,  [ 6 ]  

= (2t,U) -1 0 2 f ( ~ )  d ~ /  f (~)d  0 > 0 ( 2 . 2 1 )  

and eq. (2.18) becomes 

(2.22) 

The first term of the perturbation velocity-cUu (I) represents a simple 

source with its strength equal to ~[U-u]u dy at the initial station [12]. 

For u(2),u(3), etc. the boundary conditions and the initial conditions are 
homogeneous, they are nontrivial because of the inhomogeneous terms in 
their differential equations. The solutions can be expressed in terms of 
integrals and the integrals are expanded in asymptotic series for large x 
as done by Stewartson. In order to show the condition for the occurrence 
of the in terms, it is clearer to use the method of separation of variables 
and the method of normal modes [9-]. 

Since u(I) is expressed in terms of the variable x and ~, eq. (2.9b) can 
be written in terms of the new variables as follows: 

x ~g 

= z: F (~)(X/Xo)'~/e (2.23) 
n=2,4,6.. 

d 2 d 
w h e r e  L - + 21~ - -  ( 2 . 2 3 a )  

dE 2 d~, 

rt-1 
F n (~) = 21- e k k k n _  k ( ~ k ~ n .  k ) ~  ( 2 . 2 3 b )  

k=1,3,5.. 

f o r  e a c h  v a l u e  of  n, the  p a r t i c u l a r  i n t e g e r  c a n  be  w r i t t e n  a s  x "n/2 Hn(~)  
w h e r e  Hn(~)  i s  the  s o l u t i o n  of  the  e q u a t i o n ,  

H~(~)  + 2~H'a(~)  + 2n Hn(~)  = F a ( ~ ) ,  n = 2, 4 , 6 , . .  ( 2 . 2 4 )  

a n d  

subjected to the boundary conditions of HL' ~ (0) = 0 and Hn(m ) -~ 0 exponentially. 
Since n is even and cannot be one of the eigenvalues for the homogeneous 
equation which are odd integers, the method of separation of variables 
works and Ha(~) can be obtained by making use of ~n(%), one of the solutions 
to the homogeneous equation. The result is 

Hn(~)  = ~}n('~) ] (~n (~) e x p  ( -g2 )d~  F n ( ~ ' ) ~ ) n ( ~ ' ) e x p ( ~ ' ) 2 d ~  ' 

+ c n ~(~) (2.25) 

where C n is to be determined by the condition H' (0) = 0. 
n 

T h e  s e c o n d  p e r t u r b a t i o n  s o l u t i o n  i s ,  

u(2) (• ~) -- ~ (Xo/X) Hn(~)+ ~=~,5. I1----2,4, @ �9 O 

: 

where I~s' are determined by the initial condition at x . The result is 
O 



28 L.Ting 

The coefficient B 1 is set equal to zero due to the fact pointed out before 
that the perturbation equation conserves the momentum integral. It is hard 
to see B 1 = 0 directly from the equation for Bk unless Hn(~) were ex- 
panded in series of the eigenfunctions ~x. Since this expansion will be 
carried out for the next order approximate solution, it will not be repeated 
here. 

For the determination of the next order solution, u (3) , eq. (2.9c) is re- 
written in terms of variables x and ~, 

Lu(3) 4XUx(3) u(l)u(2) ~ = j=3,4,sE (x ~ i/2 Gj_~_( ) (2. 27) 

j=2 
w h e r e  Gj([)  = P, A k E(I)k([)Hj_k (~)]$$ fo r  j = 3, 5, 7... (2.27a) 

k=1,3,5 

} j=l [(I ) ] for j = 4, 6,8 (2.27b) and G ({) : E Ak B/-k k (~)(I)].[~) ~ 
k=1,3,5 

If u (3) is also assumed to be the sum of products, X 7/12 K(~), K~(~) has to 
be the solution of the same equation for Hj,i. e. eq. (2.24) ~ith F J replaced 
by Gj, J 

LKj + 2jKj = Gj j = 3, 4, 5 . . .  (2.28) 

subjected to the boundary conditions, K'](0) = 0 and K] -* 0 exponentially 

When j is an even integer, the solution K can be obtained in an identical 
manner as Hj given by eq. (2.25). J 

When j is an odd integer, which is an eigenvalue of the differential 
equation, the solution K~ does not exist if Gj is not orthogonal io the eigen- 

�9 J . . . 

functlon of ~j. The eondltlon is 

o 

In particular, for the first odd inieger of j's, j=3, eq. (2.29) reduces to 

O r  

f 

f # o (2.3o) 

This is exactly G01dstein's condition ET] for the breakdown of his third 
iteration solution when the variable ~ is related to Goldstein's variable 
by the equation 2~ 2 = D 2. 

Once the cause for the breakdown is traced to the existence of inhomo- 
geneous terms which are proportional to the eigenfunetions x-X/2~(~) of 
the partial differential equation eq. (2.27), it is evident that these terms 
should be separated from the rest. The inhomogeneous term x'J/2Gj(~) with 
j equal to an odd integer can be split into two parts, the first part is 
proportional to the eigenfunction and the second part is orthogonal to it. 
The particular integral for the second part can be obtained in the same 
manner as for Hi. The particular integral for the first part can be ob- 
tained by the method of normal modes. Instead of obtaining these two parts 
separately, both of them and the part with j's equal to even integers will 
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be obtained together by the method of normal modes [9]. 
The inhomogeneous terms will be rewritten in series of the eigenfunctions 

@~ (~), i . e . ,  

Z ~(~) ~, c,,j(X/Xo)-J/2~ (2.31) (X/Xo) ' j /2  Gj(~)  : A=3,5 j=3,4,5 j=3,4,5 

where 

fo ~ Cxj = j (~)~) t (a  ) e x p  ~2 d~ e x p  ~2 d~ (2.  32) 

T h e  s o l u t i o n  u (a) w i l l  be  e x p r e s s e d  b y  the  f o l l o w i n g  s e r i e s ,  

u (3) : ~ X~(x) ~X(~). 
~,=1,3,5... 

T h e  p a r t i a l  d i f f e r e n t i a l  e q u a t i o n ,  eq .  ( 2 . 2 7 )  y i e l d s  the  f o l l o w i n g  e q u a t i o n  
for Xx (x) ,  

2x X{(x )  + )tX)~(x) = -�89 ~ Ckj(Xo/X)J/2 for X = 3 , 5 , 7  . . . .  
j=3,4,5 

T h e  s o l u t i o n  of t h i s  e q u a t i o n  s u b j e c t e d  to the  h o m o g e n e o u s  i n i t i a l  c o n d i t i o n  
a t  x = x o > 0 i s  

j--3,4,5 j-~t (X~ - - ~ (Xo/X)X/2  ~ n ( X / X o )  
j#x 

The third perturbation solution is 

Cxx 
u(3) : ~n(x/x~ ~=3.5.?~" - - 4  (Xo /x)~t2 ~(~) 

(2.33) 

+�89 ~ ~X(~) Z % [ ( _ ~ ) j / 2  _ (% )X / 2 ]  
k--3,5,7 j=3,4,5 j -k  

I . . . .  - - "  j#x 

The first series contains the extra factor In(x/x o). In ~artieular for k : 3, 
�9 �9 3/(z~3�89 and U (3) can be written as 033 glven by eq. (2.32) Is equal to A 1 

3 

: , -- ~n X (I)a(~) + o (x -3/2) 
4~r3 ~ 

This equation together with eq. (2.22) for u(D and (2.26)for u(2) yield 
the solution for the x-component of velocity in the wake region x > Xo, 

{ (Xo/X) {)I (~) + u = U l-cA I 

- ~ ( A l ( X o / X )  + ~2 + 

3 3 
r A 1 

+ ! (Xo/• x ~3(~) 
47r3 z 

+ 0 (cx  -5/2) + 0 ( e 2 x - 3 / 2 ) }  

From the dependence of the inhomogeneous terms on x, it can be concluded 
that the contributions from the hi~her order perturbation (4u(4) are at most 
of the order of e4x-3/2 or c4x'5/Zln x and of higher order than c2x-3/2 Jrl x 
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either as r 0 or x--.~o. The last statement is valid for any term 
Gnu(n) with n > 3. 

A l o n g  the l ine of s y m m e t r y ,  (J : 0 and [ = 0, the a s y m p t o t i c  e x p r e s s i o n  
in x f o r  u is 

U ~ I - A x  ~ -  �89 -1 - (i/8)3 "�89 A 3 x "3/2Ln x + 0(x-3/2)% U = 
t J 

whe re 
o ~  

A : 2GA~(Xo/~r)�89 : I (f(e) d~/(~vU)l 
O 

: Jo(U-u)u dY/(~ruU) �89 = �89 �89 

The  c o n s t a n t  A which  is  p r o p o r t i o n a l  to the i n t e g r a l  of the in i t ia l  p r o f i l e  
o r  to the m o m e n t u m  t h i c k n e s s  is  i d e n t i c a l  with the one u s e d  by G o l d s t e i n  [ 7 ]  
who r e l a t e s  A to the d rag ,  D, of the body when  the in i t i a l  p ro f i l e  in the wake 
is u n s p e c i f i e d .  The  a s y m p t o t i c  e x p r e s s i o n  i nc lud ing  the x -3/z ,~n x t e r m  
is in a g r e e m e n t  with tha t  by  C r a n e  [-14] who c o r r e c t e d  a s l ip  in S t e w a r t s o n ' s  
a n a l y s i s .  C r a n e  [ 1 4 ]  appl ied  L i g h t h i l l ' s  t echn ique  [ 1 5 ]  to r e m o v e  the 
l o g a r i t h m i c  t e r m  by t r a n s f o r m i n g  x to a new v a r i a b l e .  H o w e v e r ,  his  so lu t ion  in 
t e r m s  of the p h y s i c a l  v a r i a b l e  x s t i l l  c o n t a i n s  the l o g a r i t h m i c  t e r m .  In the 
s p i r i t  of L i g h t h i l l ' s  t echn ique  [15 ] ,  the u n d e s i r a b l e  s i n g u l a r i t y  is u s u a l l y  
a l lowed  in the p lane  of the t r a n s f o r m e d  v a r i a b l e s  but  r e m o v e d  in the p lane  
of the p h y s i c a l  v a r i a b l e s .  In the p r e s e n t  p r o b l e m ,  the f i r s t  l o g a r i t h m i c  t e r m  
a p p e a r s  as  GSx "3 2n x /x~,  It  is  u n i f o r m l y  s m a l l e r  than ~, Gx -I and c2x -2 
f o r  x_>x o and t h e r e f o r e  does  not  i nva l i da t e  the p e r t u r b a t i o n  s c h e m e .  

2.3 Logarithmic Terms in Higher Order Solutions 

Once the reason for the appearance of the logarithmatic term is under- 
stood, it becomes relatively easy to keep track of the higher order solution. 
In the third order terms, the c ~ terms, logarithmic terms are of the type 
x -~/2 fn x ~x([). In the G 4 terms there are terms of the type x'n/2In x 
~([) where n is any integer due to the product of u (I) and u(s) and the 
square of u (2) in the inhomogeneous part. In the G ~ terms there are in 
addition to these typical In x2terms but also terms of the type x-X/2(Zn x) 2 
~)x(~)iu'0 The terms with (~n x) are due to the products of u(2) and u(S)x2 and 
of and u(4) which produce inhomogeneous terms of the type x-/ s x 
~)x([). The leading (~n x) 2 is proportional to ~SASx~O/2(gn x)Z(~,~(~). It can 
be generalized to the statement that the leading (~n x) m term is proportional 
to (~A) 2m+1 x-tSm+n/s (~n x)m~2~+ 1 (~). 

3. Perturbations from Similar Solulions in Bom~dary Layer 

F o r  a g iven  s i m i l a r  so lu t ion ,  s a y  the B l a s i u s  solu ' t ion,  the h o m o g e n e o u s  
p a r t  of the p e r t u r b a t i o n  equa t ion  wil l  be the s a m e ,  whi le  the i n h o m o g e n e o u s  
p a r t  wil l  be d i f f e r e n t  f o r  d i f f e r e n t  p e r t u r b a t i o n  p a r a m e t e r s .  In the s t u d y  of 
h i g h e r  o r d e r  so lu t i ons  fo r  b o u n d a r y  l a y e r  a long  a f la t  p la te  in 3, the e x -  
pans ion  p a r a m e t e r  ( is the i n v e r s e  of the s q u a r e  r o o t  of the r e f e r e n c e  
R e y n o l d s  n u m b e r ,  the g o v e r n i n g  equa t i ons  a r e  the N a v i e r  S tokes  equa t i ons ,  
and the i n h o m o g e n e o u s  t e r m s  inc lude  those  o m i t t e d  in the b o u n d a r y  l a y e r  
equa t ion  and the i n t e r a c t i o n  with the flow field ou t s ide  the b o u n d a r y  l a y e r .  
When the p e r t u r b a t i o n  is due to s m a l l  dev i a t i on  of p r e s s u r e  f r o m  the c o n -  
s t an t  va lue  3 . 2  o r  due to the s m a l l  dev ia t ion  of the in i t ia l  p ro f i l e  f r o m  the 
s i m i l a r  p ro f i e l ,  3 . 3 ,  the s m a l l  p e r t u r b a t i o n  p a r a m e t e r  is  u s u a l l y  m u c h  
l a r g e r  than the i n v e r s e  of the s q u a r e  r o o t  of the R e y n o l d s  n u m b e r  and, 
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therefore, the governing equation is the boundary layer equation. Since 
the homogeneous parts of the perturbation equations are the same and the 
boundary conditions can be reduced to the same homogeneous conditions, 
the eigenvalues, eigenfunctions and the Green's functions are the same. 
Onee the different inhornogeneous parts are obtained, the same treatment 
can be employed. A general discussion of the appearance of logarithmic 
terms and powers of logarithmic terms is given at the end of 3. i for per- 
turbations from the Blasius solutions. 3.4 gives a general discussion for 
perturbations from a similar solution with pressure gradient. 

3. 1 Higher Order Solutions f o r  Boundary Layer  over a Flat Plate 

The higher order solution for boundary layer over a semi-infinite plate 
was obtained by Alden using parabolie coordinates [163. The solution has 
the defect that the resulting vorticity decays only algebraically for large 
y or ft. To enforce the condition of exponential decay, Goldstein eorrected 
Alden's solution by the addition of a term involving in x or in Re x where 
Re x is the local Reynolds number. In this section, the perturbation method 
will be used to generate the asymptotic solution including the logarithmic 
term whose appearance will again be identified as the "resonance" phenom- 
enon of an inhornogeneous term with one of the eigensolutions. 

For the sake of some variation from the classical method of approach 
with parabolic coordinates, the Cartesian coordinates x, y will be used in 
the analysis. Near the plate represented by the positive x-axis and at 
sufficient distance from the leading edge (say x > Xo) , the leading term of 
the solution obeys the boundary layer equation. It is obtained systematically 
by a stretching of the y-coordinate to Y with Y = y/c. The small parameter 
c represents the inverse of the square root of the Reynolds number, Re, 
with respect to a reference length L. The stream function for the boundary 
layer region will be represented by a Taylor series in %i.e., 

r = ,r + ,2r  ) + c3G(x,y) + . . .  ( 3 . 1 )  

The leading term is given by the Blasius solution, 

cff ~ ( x , Y )  = (2 uUx)�89 : c U ( 2 x L )  �89 fo(r;) (3.2) 

where fo is the Blasius function [8] and N is equal to y(2ux/U) "�89 orY/(2xL) �89 
For large '0, fo behaves as ~-~ + 0[exp(-u2)] with /3 = i. 217. 

The stream function ~(x, y, c) for the outer region will also be represented 
as a Taylor series in e as follows [5]: 

: u y  - . . .  ( 3 . 3 /  

The first term represents the uniform flow and the second term the dis- 
turbance due to displacement thickness of a Blasius profile [17]. Since 
the induced pressure and tangential velocity due to the second term vanish 
at y = 0, the seeond term ~I (x,Y) in the boundary layer vanishes and 
consequently the next order outer solution ~2 (x, y) also vanishes, i.e., 

~ l ( X ,  Y) = 0 a n d  ~2(x,  y) = 0 ( 3 . 4 )  

T h e  i m p l i c a t i o n  of  e q s .  ( 3 . 2 )  a n d  ( 3 . 4 )  on  t h e  i n i t i a l  d a t a  a t  x = x w i l l  
be  d i s c u s s e d  a t  t h e  e n d  of  t h i s  s e c t i o n ,  o 

D u e  to  the  d e p e n d e n c e  o f  @1 on  x a n d  ~], t he  v a r i a b l e s  x,  Y w i l l  be  r e -  
p l a c e d  b y  x,~].  A f t e r  t h e  s u b s t i t u t i o n  of e q s .  ( 3 . 1 ) a n d  ( 3 . 2 )  i n t o  t h e  n o r m a l  
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c o m p o n e n t  of  the  N a v i e r  S t o k e s  e q u a t i o n ,  the  c o e f f i c i e n t s  of  e y i e l d  

o o j , ~  

The cond i t ion  of match ing  w i th  the ou te r  sotut ion [5 ,  18, 19 ]  g i v e s  

Z i m [ p  2 (x ,  q) 

/]--*cO 

o r  

- r/(2xL)�89 P l . y  (x,  0 ) ]  ~ P2 (x,  0) = -pU2fl  2 L / ( 4 x )  

and  the  i n t e g r a t i o n  of  eq .  ( 3 . 5 )  w i t h  r e s p e c t  to  ~ g i v e s  

= - o - f "  ~ / 2 ]  P,o ,o '  ,' + ,,o + 

w h e r e  

and  

H(r~) = _~2_/]2fo,2 _6~f  ~ 

( 3 . 6 )  

F r o m  the cond i t ion  f o r  ma tch ing  of u 2 w i th  the ou te r  so lu t ion,  the behav io r  
�9 �89 3/2 of u 2 as /]-*on is u 2 + U # Y L  / (2x)  ; O. In the change of the dependent 

va r i ab les ,  the s t r e a m  funct ion  @2(x,/]) w i l l  be re la ted  to the new func t ion  
f e (x , / ] )  a s  f o l l o w s  

' 1 - 2 �89 3/2 
~ 2 ( x , Y )  = U ( 2 x L )  ~ f2 (x , r ] )  - 7U/JY L / ( 2 x )  ( 3 . 7 )  

so that 

u2(x'Y) + U~YL{/(2x)3/2 = (@2,y + U/~YL{/(2x)3/2 = Uf2,~ (x,/]) 

The boundary conditions for f2 will become homogeneous, 

f2(x ,  o) = f2d) (x,  0) = 0 ( 3 . 8 )  

a n d  f2,v (x,/]~o0) ~ 0. 

T h e  l a s t  c o n d i t i o n  w i l l  be  r e p l a c e d  b y  a s t r o n g e r  c o n d i t i o n ,  

f2,,~ (x,/]-,oo) , 0 e x p o n e n t i a l l y ,  ( 3 . 9 )  

in  o r d e r  to  f u l f i l l  the  c o n d i t i o n  of  e x p o n e n t i a l  d e c a y  of  v o r t i c i t y .  
A f t e r  the  s u b s t i t u t i o n  of  e q s . ( 3 . 1 ) ,  ( 3 . 2 ) ,  ( 3 . 6 )  and  ( 3 . 7 )  i n to  the  x - c o m -  

p o n e n t  of  the  N a v i e r  S t o k e s  e q u a t i o n ,  the  c o e f f i c i e n t s  o f  e ~ y i e l d  

M f2(x , / ] )  = H(/]) L / ( 2 x )  ( 3 . 1 0 )  

a 3 02 02 
M = 3 + f + f " - 2xf  ' + 2 x f  " ~ ( 3 . 1 0 a )  o 2 o o ~x NI o ~x 

" ~ f " + 2 f  ~+f i [ fo - �89  ' "] -7/fofo' +r)~fo-o "--o _1 g (3. lOb) 

(3.5) 

Z i m [ p  2 (x ,  rT) - pU2rTfiL/(2x)] , - p U 2 ~ 2 L / ( 4 x )  

r]-*r 



Asymptotic Solutions of Wakes and Boundary Layers 33 

It can be verified easily that H(t]) vanishes exponentially as rp,~. The ho- 
mogeneous part of eq.(3. 15) is identical with the linearized boundary layer 
equation when perturbed from Blasius solution [I0]. The eigen solutions 
of the homogeneous equation subjected to the homogeneous boundary con- 

- ~  t2 
d i t ions  of eqs .  (3 .8)  and (3 .9)  have  the f o r m  ( x / x )  k N~.(~I) w h e r e  the 

. O  ~ . e i g e n v a l u e s  kk, a r e  2, 3. 774, 5. 629 . . . . . .  The f i r s t  twen ty  e l g e n v a l u e s  
a r e  t a b u l a t e d  in [20 ] .  Only  the f i r s t  e i g e n v a l u e  is  an i n t e g e r  and the f i r s t  
e i gen func t i on  is  p r o p o r t i o n a l  to the x - d e r i v a t i v e  of the B l a s i u s  so lu t ion ,  
i . e . ,  Nl(r~) = [r/f~ - f o ] / f o " ( 0 )  w h e r e  fo"(0)  = 0. 4696.  Since the p o w e r  of 
x in the i n h o m o g e n e o u s  t e r m  is  equa l  to - ) t l / 2  and H(~?) is  in g e n e r a l  not  
o r t h o g o n a l  to NI(~) ,  a l o g a r i t h m i c  t e r m  is e x p e c t e d .  Al though the m e t h o d  
of n o r m a l  m o d e  can  be u s e d  h e r e  again ,  the e q u i v a l e n t  m e t h o d  of G r e e n ' s  
function will be used since the Green's function is available in [i0]. The 
particular integral f is 

2,p 

f2.p = k= l l  Ck aFT H(~) i f :  ~-~ ,=~ ~xx ( x ) -  ( 2 ~ )  (3 .11)  

C k = S~(fo4/fo)  [ ( N k / f ' o ) ' ] 2 d q i s  the n o r m a l i z i n g  cons t an t .  The  t e r m  w h e r e  

in s ide  the c u r l y  b r a c k e t s  r e p r e s e n t s  the r e s o l u t i o n  of H(~) to the k th n o r -  
rea l  m o d e .  The  i n t e g r a l  wi th  r e s p e c t  to K can  be c a r r i e d  out  and the de -  
f in i t ion  of N 1 can  be i n t r o d u c e d  to s i m p l i f y  the f i r s t  t e r m .  The r e s u l t  is 

_ g in s j] fo(f])H(~)d~ f y , p -  - 2--~ 

k--2,3,4 )Ck 

where 

Bk = I~d~lH(g) [(fo 2/f'o') (N~/f'o)']~=r~ 

The integral in the first term is found to be "i. 658. Together with the 
complimentary integral, the solution is 

f'2 = 0. 829 ( L / x ) l n  Rex (r/f'o-fo) 

+ Z SkN 
k=2,3... 

(3 .12)  

-~k~2 
AkNkO]) (x/x o) 

k=l,2 

Where Re x denotes the local Reynolds number. The coefficients A k are 
undefined because the initial profile at the station x=x is not yet available. 
In replacing ~nx/x o in the first term by ~n Rex, the ~ difference Zn Rexo is 
absorbed in the unknown constant A~. A k s will be independent of ~ or the 
Reynolds number if Rexo is of the order of unity and the initial profile 
at the station x=x o differs from the Blasius solution by an order of c 2. 
Indeed Imai [S] patched at Rexo = 1 with the result of Carrier and Lin 
[21] for viscous flow near leading edge and obtained a finite value for A I. 
The validity of this patching is still in doubt [4]. 

Although the inhomogeneous term in eq. (S. i0) is different from the cor- 
responding term when parabolic coordinates are used, the integral of the 
product of fo and the inhomogeneous term with respect to ~] from 0 to ~) 
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is independent of the coordinate system. From eqs. (3. i), i(3.7) and (3.12), 
the coefficient of skin friction is given by Cf ~ 0. 664(Rex)-~ +0. 551(Rex) -3/2 
~nRe x + 0(Rex) "3/2 . It is in agreement with the results of Goldstein and 
Imai. 

It should be pointed out that the eigenvalues k k with k > 2 have the 
following properties: i) they are not integers, it) they do not differ from 
each other by an integer, iii) the sum of any number of eigenvalues is 
not an eigenvalue. Since the inhomogeneous parts of higher order equations 
are formed by the products of perturbation solutions with terms involving 
powers of x equal to half of a negative integer or a half negative integer 
minus half the sum of several eigenvalues, the "resonance" phenomenon can 
occur onlywith the first eigenvahe l I = 2. The conditions for the appearance 
of a "resonance" term or a x "I In x term in the solutions are: i) there is 
a term in the inhomogeneous part which is proportional to x -I i.e. of the 
form x "I G(U) and it) the function G(rl) is not orthogonal to the first eigen- 
functions 

?o ~l(r~),  i . e .  (~) O(rl)d~ r O. 

Since  the n e g a t i v e  p o w e r  of x in the  i n h o m o g e n e o u s  t e r m  f o r  the t h i r d  o r  
h i g h e r  o r d e r  p e r t u r b a t i o n s  a r e  g r e a t e r  than  X l ,  r e s o n a n c e  p h e n o m e n o n  
wi l l  not  o c c u r .  The  .~nx t e r m s  wi l l  a p p e a r  o n l y  t h r o u g h  the p r o d u c t s  wi th  
the e2x -I 2n x in c2f2(x, ~]). For example, it is expected to have e 3 x-3/2,~n 
x terms in ~3f3, E4x -2 in x and c4x -l-kk /2 ~n x terms in c4f~ and the lead- 
ing (s x) 2 term will appear as cSx'5/2(s x) 2 in esfs(x,~). ~ 

3.2 Boundary Layer with Small Pressure  Gradient 

When the parameter c is used as a measure of the small variation of 
pressure along the surface after the station x = x > 0, the pressure 

O 

gradient can be written as 

p~/(ou 2) = r x 2 x o 

The velocity outside the boundary layer will differ from U by an order of 
c and will be consistent with ~. The small parameter ~ is assumed to be 
much larger than the inverse of the square root of the reference Reynolds 
number, so that the governing equation is the boundary layer equation. 
The stream function ~ can be written as 

~(x,y, ~) = (2~Ux)�89 {fo(r/) + efl(x,u ) + e2f2(x,r/) + ...} (3 .13)  

• 

where fo is the Blasius function and ~ : y/(2xv/U) 2. The functions fl and 
f2 are governed by the equations 

Mf 1 = 2X~x (3. 14a) 

and Mf2 =2x(f1,~fl,~x fl,xfl,~) - flf1,~ (3 .14b)  

The linear operator M is defined in eq.(3.10a). To be specific, the pressure 
variation assumes the following form 

( p - p ) / ( ~ u  2) : ~ ~ a_~x/x ~-~/2 (3 15) 
[ 1 = 1 , 2 , 3 . . .  11, i Ot 

and the pressure gradient becomes 
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Px = - (2x)-1 E nan(X/Xo)-n/2 
n=1,2,3 

35 

Since f[ and the inhomogeneous part in eq. (3.14a) do not vanish as r/-*oo0 
a new function F1(x,r/) is introduced, with 

Fl(X,r/) : fl(x,r/) + f ~ an(X/Xo )-n/2 (3. 16) 
o n=1,2,3... 

such that 

M~ :- n=~.~...r' an(X/Xo) n/~ [n(1-fo'% -(l-n) fo ~'']o~ (3.17) 

F I fulfills the homogeneous boundary conditions, F I = FI, ~ = 0 at r/ = 0 
and F. -,0 exponentially as r/-)oo. The eigenvalues /k and eigenfunction 
Nk(r/) for MF I = 0, are the same as those in the preeeeding example. 

A Inx term is expected only from the inhomogeneous term with n = 2 = 
/i. The solution for F I (x,r/) can be obtained from the Green's function 
[i0] and the result is 

F 1 (x, N) = -al(x/x o) ~d~ f'~(F]) fo(r/') 

f2 2 1 )) - a2(X/Xo)'ls (fo-r/fo') fo(l-fo' +~fofo )dr/ 

+ O(x -1 ) 

The remainder of the particular integer and the contributions from the 
initial conditions are represented by the symbol 0(x'!). The solution for 
f1(x, r/) is 

f l ( x ,  r/) = -a  l(X/Xo) "~ d~ fo"(~)  ' r7'-/3 drl, fo"(r/') (3.18) 
+ 1.70 a2(x/xo) "I In(X/Xo) (r/fo'-fo) + 0(x "I) 

Eq. (3.14b) can now be written as 

Mr2 = - ( x / x ~  a12 f~ o f'~(r/') dr/ 
2 

+ 0(x'3/~ Inx) 

A new variable F 2 (x0 r/)will now be introduced to achieve the homogeneous 
boundary condition at infinity and preserve the same two conditions at 

= ~ { ~ n(x/xo) -n/2 ) the equation r/ 0. With F~ (x, r/) = f2 - 2 al 2 fo (r/) n=l,2 
for F 2 is 

~F 2 (x/x ~ )-i + al 0 { I / ol } 
where 

)7)-~ dr/' ,)2 1 ,,f 
H2(r/) = f~ fo"(r/') (fo + ~fo o 

The leading term for F2 is the x -I ~r? x term and is again obtained directly 
from the Green's function. The result for f2 is 
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r  

fs(x'U) = al 2 Io foOl')H2 (N')dN' (x./Xo)'l 2n(x/xo) 0]fo '- fo) 

+ 0 (X/Xo 1"I : - 1. 313 al2(X/Xo) -1 in  (X/Xo) (r~fo'- fo) 

-1 
+ 0 (X/Xo) 

For given r the asymptotic solution for large x is 

t : (2xuv)  ~ fo(~) - ax-~ d~ fo"(~) d~' ( <  19) 

+ (l.70b - 1.313 a 2 ) x -I Z n x (nfo~-fo) 

- 0 (x -] )} 

~alXo �89 and ca2x o are indentified as a and b such that the pressure variation 
agrees with the form assume<] by Stewartson[l].Eq.(3.19) is in agreement 
with that of Stewartson with the exception of the sign of the ~n x term due 
to a slip in [i]. 

3.3 Deviation of Initial Profi le f r o m  Blasius Solution 

When the perturbation parameter r is a measure of the deviation of 
fo(~) from the stream function, the initial profile at Station x = xo can be 
written as 

r = ( 2 x ~ )  ~ [ f o ( ~ ) +  ~fl(x,~) + ~%(x,~)  + ...] 
The equation for fl(x,~) is ll/[f] : 0 where iV~ is the linear operator defined 
in eq. (3. 10a). The solution can be written in the form: 

%(• : }, Ak(X/•  Nk(~) 
k=l, 2 

The higher order solutions obey the nonhomogeneous equation 

Mf (x,~]) : Hn(x,  7) 

where Hi1(x,U) involves products of f and f3 with ~ + ~ = n for n = 2, 3 .... 
The lowest negative half power of x o~ terms in Hn(X, 7) is 4 and is greater 
that the only integer eigenvahe XI" From the general properties of the 
eigenvalue Ak stated at the end of 3. i, it is clear that a s term will 
never appear in any of the higher solutions fn(x,U). This is in contrast 
to the far wake solution in 2 where the eigenvalue are odd integers and 
fnx terms appear in the third and higher order perturbation solutions and 
are attached to all the eigensolutions except the first one. 

3.4 Perturbalio;zs lo S imi lar  Solulio~,~s ~vith Pre s sure  GT'adie;# 

For a nonsimilar laminar boundary layer, the equation for the modified 
stream function f(s,7) is 

f ~ ,  + f f ~  + /3(s) (1 f ~ )  : 2 s ( f~ f~  - f%f~) 
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where s and 0 are the variables defined in [i0] and ~(s) is the pressure 
gradient parameter. For each constant ~o there is a similar solution, the 
Falkner-Skan solution F~o (r~). The solution f(s,u) is assumed to differ 
slightly from I~o (7) by a power series in e, i.e. 

f ( s , r / )  = Fgo (r/) + ef l (S,•  ) + c 2 f 2 ( s  ,r/) + . . .  

T h e  p a r a m e t e r  c c a n  r e p r e s e n t  the  s m a l l  v a r i a t i o n  in  i n i t i a l  p r o f i l e  o r  a 
m e a s u r e  of  the  v a r i a t i o n  in  p r e s s u r e  g r a d i e n t ,  /3(s) - /3 o. T h e  h o m o g e n e o u s  
p e r t u r b a t i o n  e q u a t i o n  i s  of  the  f o r m  [ 2 2 ] ,  

M g f  n = 0 

where 

M~ 
33 32 

- - -  2 - + F  
393 0r72 So 3r~ So 

3 32 
+ 2SF~o" 3s 2SFso' 3s3rl 

With the homogeneous boundary conditions the same as those for the case 
of zero pressure gradient, /3o = 0, stated in 3. i, the eigenvalue problem 

can be set up in the same manner by looking for solution of the type s "~'k/2 
Nk(r7 ). The eigenvalues )t k have been found by Chen and Libby [22~ for 
several values of ~o between 2 and -0. 1988, the separation value. With the 
exception of ~o = 0, none of the eigenvalues are integers and the sum of 
the eigenvalues is not an eigenvalue. It is clear that the perturbation so- 
lution due to the variations in the initial profile will not have any 2ns 
terms. The variation in pressure gradient can create lns terms in per- 
turbation solutions only if the difference, ~(s) - /~o involves terms with 

-kk/2 
s p e c i a l  p o w e r  of  x, e . g .  x 
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